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An unbiased hierarchical global optimizatig80O) method for quasiseparable systems is presented. In such
systems the coordinates of a set of nearby local minima approximately describe the coordinates of a much
larger set of surrounding local minima. This allows one to reduce the original GO problem to a much simpler
GO subproblem that uses the coordinates of the local minima to reduce the search space and simplify its
landscape. The algorithm showed excellent performance in tests on “difficult cases” of Lennardildnes
clusters. Putative global minima of 4gd and LJyqg are obtained.
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Global optimization(GO) is one of todays rapidly grow- weak compared to the interactions inside the subsystem: it is
ing fields of science with many important practical applica-strong enough to make a notable contribution to the total
tions. In a general statement of the problem, the global optienergy, but it is weak with respect to the change of the con-
mization of an arbitrary function requires a search througHiguration inside the subsystem, which is stabilized via much
the whole of configurational space. The problem is nondeterstronger local interaction.
ministic polynomial-time(NP)-hard due to the fact that the ~ For such systems, the coordinates of a set of nearby local
space grows exponentially with the problem size. Howeverminima approximately describe the coordinates of a much
in many interesting problems, the functions to be optimizedarger set of surrounding local minima, and allow one to
are not arbitrary and possess some characteristic propertig€duce the original GO problem over that region to a new
This allows one to devise effective heuristic algorithms toGO subproblemhierarchical step which operates directly
find global minima. However, the problem of proving that with the local minima. This significantly simplifies the origi-
the determined minimum is a global one usually still remainghal problem by reducing its search space and simplifying its
NP hard. landscapdFig. 1). Such hierarchical reduction of the prob-

For brevity we will consider the problem of an unbiasedlem is continued until the last problem can easily be solved
GO of a potential energy surfad®ES U(x) of a many- by a simple GO algorithm.
body system(e.g., clustex, wherex represents the system  Consider a local minimum structure of the system. If we
coordinates. A number of general methods have addresséandomly perturb a small part of the structure and apply local
this problem. Simulated annealid], the first announced Minimization, we can find a new local minimum nearby.
generally applicable unbiased optimization technique, wa$ince distant parts of the system are independent, the new
not very successful at the GO of these systems if the PEStructure will, most likely, differ significantly from the origi-
was rugged. Genetic algorithrf] (GA) were the first meth- nal in only a small(perturbed part, with the rest of the
ods that reproduced, in an unbiased search, all the knowsfructure being almost the same. We call such systems quasi-
global minima of moderate Lennard-Jon@s)) clusters as Separable. More rigorously, lex={xy, ... X,} and x’
well as finding new global minima. According to the litera- ={x;, ... X;} be the coordinates of two nearby local
ture, the “basin-hopping” methof] (which is similar to the  minima on the PES. Given a threshaid we call the coor-
Monte Carlo plus minimization metho@]) is one of the dinatex/ (or x;) changedif |x;—X/||> € [8]. The system is
fastest unbiased global optimization methods for moderatgquasiseparable if, for almost every pair of nearby local
sized systems. It was applied to various cluster systgdis  minima, the number ofhangedcoordinates is much smaller
Morse, water TIP4P, efcwith results being entered into the
Cambridge Cluster Databas€CD) [5]. A review of other
GO methods can be found |B].

GO by these methods becomes very time consuming fot
larger systems because of the huge search space, e.g., glok
optimization of Ldg with a variant of basin hopping takes on
average, 30 CPU hours on a Sun Ultra Il 333 MHZ Here
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FIG. 1. Sketch of the HGA on a model PES. The search space of
*Electronic address: krivov@quentin.u-strasbg.fr subproblenmH is much simpler than the original problem.
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than the total number of degrees of freedom of the system#raction of attempts will succeed; e.g., for the GO ofyg.J
Note that quasiseparability depends on the region of thenly six of 1000 attempts were succesgfLl] (the variant of
PES considered. In high energy regions the system is usuallyasin hopping described in this work is SGAhe fraction
very unstable with respect to minimization, and the perturof successful attempts can be improved by broadening the
bation of a small part of the structure could lead to the reorsearch region when looking for lower minima. This can be

ganization of a considerable part of itd o achieved by considering not only the neighboring minima,
_Consider the local minimunx={x], ... xy} together byt also the second neighbor minima, the third neighbor
with msurrounding nearby local minimd, ... x™ We call  minima, and so on. Though this process seems rather elabo-

this the basis set of local minima. For every minimu)(n  rate for an arbitrary system, it can be done effectively for the
the basis set we store the setafangedcoordinates with  guasi separable systems, where the nearby minima approxi-

respect tox” as S=({x_, ... X i1, ... ii}), where  mately describe the minima of the constructed set. We state
{x e ,x{k} and{iq, ... k} are the values and the indices the GO subproblencall it subproblemH): find the lowest
the following transformation (subst|tut|0|) if iefi,, lowestU(i,---is), whereU(i,---is) denotes the energy of

- . . 0
iy} of oI, thenx/ —xf, elsex =x;, i.e., T; x0 is equal the minimum corresponding tﬂiil- . ~Tisx . SubproblemH

(W|th accuracye) to the X! local m|n|mum |f we further is significantly simpler than the original problem because
apply such a transformatioh, to T;x°, which acts solely on  (see Fig. 1 first, we significantly narrow the search space
nonchanged coordinates iy N we f|nd the approximate (now we operate only on coordinates of local minima instead
position of a new local m|n|munTkT x°, because the local ©f the full spacg and second, we simplify the landscape
surroundings of each coordinate are the same as those of tHastead of a basin with barriers we have just one poiit
coordinate in its respective local minimum of the basis sesubproblemH is still complex we can, in turn, reapply the
and the distant interactions are weak. Consequently, applyinggme idea, consequently obtaining a hierarchy of GO sub-

successive transformations one obtains the following set dproblems with decreasing complexity, until the last subprob-
local minima:T;. ... T, x°, with ssm. To simplify things, lem can effectively be solved by SGA. We cannot rigorously
1 s ) - )

all this a recursion algorithm, since not every problem in
this hierarchy can be solved with the same implementation of
SGA, rather, we call it ahierarchical greedy algorithm
(HGA).

we may apply the entire set of transformations, though som
of them would conflict with othersf they share the coordi-
nates. The total number of local minima could be estimated
as 2" (which demonstrates the well-known fact that in clus- . . .
ters, the number of local minima grows exponentially with The !ocal minimum energy)(i . . 'O'S) can b‘? found by

the number of atomk9]). We call this the constructed set of duénching, starting fromT; ...T;x", or estimated as
local minima. U, .. .Tisxo), or in a more complex manner.

The above construction approximately describes the coor- Let us see how HGA is related to other unbiased GO
dinates of an exponentially large number of local minima intechniques. Like GA, HGA uses parts of different structures
a region of the PES in compact form. It can also incorporateéo construct new structures. However, unlike GA, HGA re-
the coordinates of saddle points and be used for the descriguires these structuréparents in GA termsto be very simi-
tion of landscapes of important regions of the PES of largdar (number of changed coordinates should be much less then
systems, where the simple description as a database of locdle total number of degrees of freedomhis seems more in
minima and saddle points is impossible due to their hugdine with natural evolution, where not every species crosses
number. every other. HGA can be considered as a limiting case of GA

Using this construction, we can significantly improve the(if we accept the requirements of very similar pargnts
general purpose, simple greedy algoriti®GA), which,  where instead of searching for a very similar configuration, it
when implemented in local minima terms, is as follo@ee s easier to perturb the current one. Next, in GA the “child”
Fig. 1. Applying local minimization(quenching to a ran- s often produced stochastically, whereas in HGA it is a sepa-
dom configuration, one finds an initial local minimum. The rate GO subproblem that needs to be solved. This peculiarity
result is improved by randomly exploring nearby local of HGA resembles the genetic renormalization algorithm
minima. These minima can be found, for example, by con{GRA) [12], where the problem of selecting the optimal
finement simulatiorf10], i.e., a random walk in configura- “child” is reformulated as the original problem with lower
tional space with subsequent quenching. If no lower minimasize (renormalization step However, the GRA could be ap-
are found during the specified number of quenchgg  plied only to renormalizable systent was applied to the
(SGA “gets stuck”), the SGA is terminated. The algorithm is traveling salesmen and spin glass probl¢t), where the
suitable for systems with simplgone funnel”) PESs, but problem of selecting the optimal child is again the same
could be applied to systems with more complex landscapes ffroblem of lower size. HGA uses another hierarchy to con-
the described procedure is repeated a number of times  struct subproblems, namely, the hierarchy of local minima,
tistary with the hope of finding a funnel that leads to a globali.e., each subproblem optimizes the set of local minima
minimum (right one in Fig. 1. For the PES in Fig. 1, nearly found by the preceding problem, consequently reducing the
half of all starts will find the global minimum. search space. We require the subprobtéro be just a GO

If the number of funnels is large, the SGA with a multi- problem that is simpler than the original problem, and that
start procedure becomes very inefficient, since only a tinycan be solved by any general purpose GO algorithm. Another
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difference between the algorithms is that GRA, like GA, TABLE I. Nine most frequently found minima.andn, denote
does not pay attention to the similarities between the structhe total computational time and the number of quenches in the run,
tures and works with the entire configurational space. Thigespectively.U andn; denote the energy of the minimutn LJ
seems inefficient when the PES of the systems has differefiits and the number of times it was found.

deep minima with different structurés.g., in fcc and icosa- : : :
hedral packing schemes in LJ clustetsecause it is unlikely ~ LJ7s,t=450 min,  LJ77,t=450 min,  LJog,t=765 min,
that the lowest minimum consists of parts of different struc- ~ Na=2.5%10° ng=2.5x10° ng=3x10°
tures(i.e., the “genetic code” that one deep minimum pos- U Nt U il U il

sesses is useless for other distant deep minimaompari- 397 495331 27 —409.083517 19 —543.665361 53
Isowe:t”tzo;hs?rut::?s:jn-rrﬁﬁipnlﬂigif rgﬁtahc:[fg;le:Glf r?gg Sbtehe(-:‘n 396.282249 62 —408.518265 42 —543.642957 63
solved in spite of the actual Iandsréape of the PES in that -o0-238512 166 —408.499443 " 73 —541.894959 8
region; the former techniques are sensitive to the Iandscap?a?’(‘as'734052 39 —408.486640 23 —541.869748 11
of the deformed PES, since they rely on the ergodicity of 394.637268 9  —408.463320 25 —541.436260 22
Monte Carlo sampling of the landscape. —394.560154 18 —408.311778 13 —540.362599 7

Let us apply the HGA to LJ clusters, which are widely —393.435288 4 —408.303313 25 —539.720452 110
accepted as a benchmark for GO algorithms. In dimension- 393435065 4 —408.203358 51 —539.698759 62
less units, the problem is to find a configurationnoftoms =~ —392.531982 3  —407.756902 15 —538.883972 11
(rq, ...y, with the lowest value of the following potential
energy:

nate basis. From all such STC we form a p@TC poo) of
U(ry, ... r)=4 -12_ -6 PR atoms and proceed similarly to described the above.
(" ) .§<:J o Tl The overall structure of one attempt of the HGA(IY
generate an initial random local minimuf@) SGA phase
The set of nearby local minimet, . .. x™ found during (nyry=100); (3) solve subproblentd with the SGA pool of
the SGA phase are superposed with the lowest (xﬁ)a i6 atoms, if a lower minimum is found, go t®); (4) solve

the set. From atom positiong}, ... x1,x2, ... x"} we  subproblemH with the STC pool of atoms, if a lower mini-
form a pool of distinguished atom{$GA poo), whose dis- mum is found, go td?2).
tance from each other is more thes 0.3 (with total number The algorithm was tested on a number of LJ clusters. For

N). SubproblenH is to select from the pool dfl atoms a set  all clusters HGA found the known lowest minima given at
of n atoms with the lowest potential ener@fyansformations the CCD [5]. To illustrate how the algorithm works, we
T, move atoms between different position¥he total num- choose the clusters to be difficult cases for unbiased global
ber of constructed minima could be estimatedC{s Sub-  optimization[11]: LJ;s, LJ;7, and Ldg. We issued 500 at-
problemH is solved again by SGA in local minima terms tempts for each of the clusters. The nine most frequently
(nyy~100); the energies of the constructed local minima ardound minima of the clusters are given in Table I. HGA
estimated. The output is refined by the minimization of afound all known putative global minima. In the table other
number of lowest minima, giving us the true global mini- “global” (lowesy minima of structures with different mor-
mum of the constructed set with high probability. For thephologies(e.g., lowest icosahedral structure of,£ With en-
considered range of atoni8—1000, SGA was able to solve ergy —396.282 249) are also shown. This confirms that HGA
subproblemH. However, in the limit of large\, it was not  is unbiased. Since subproblefh does not always give the
very efficient, and to solve the subproblétnin more diffi-  true global minimum of the constructed set, not every mini-
cult cases, HGA should have more hierarchical steps. mum in the table represents a structure with different mor-
To find a new nearby minimum in the SGA phase, wephology. For example, the following pairs of 4zJminima,
randomly shifted an atom and applied local minimization—408.518 265 and—408.303 313, —408.499443 and
(using the limited memory variant of the Broyden, Fletcher,—408.203 358, differ by only two atoms. Comparing the
Goldfarb, and Shann@BFGS algorithm[13]). mean time to find the global minimum for the dgJ t
During the SGA phase the algorithm collects the obtained=14.4 min (PIl 333 MH2), with the value reported ifi7],
local minima(forms the SGA pooglto build the set of trans- t=30 h(Sun Ultra Il 333 MH3, we found that HGA is faster
formations(local move$ to walk over the set of constructed than a variant of SGA. Another manifestation of a more ef-
minima. One can also use availakdepriori information  ficient optimization of HGA is the fraction of successful at-
about the system to expand the set of transformations and thempts~10.6%, compared to SGA's 0.6% [7].
set of constructed minima. For example, it is well known that  Figure 2, illustrates the performance of the HGw#e
the low energy structures of the homogeneous clusters poshoose an attempt when the global minimum ofgl\Was
sess some spatial symmetries, though not always complefeund. It shows the number of changed atoms of the new
(not every atom has a corresponding symmetrica).o@en-  local minimum compared to the current ofs®lid line), and
sider various symmetrically transformed cop{€3C) of the its potential energydotted ling versus the current quench-
structure. If the number of changed coordinates betweemg. At the beginning, SGA progresses quickly. Near the
STC and the original structure is small, we can consider th&50th quench it slows down and at the 440th quench, SGA
former as a new nearby local minimum in a proper coordi-gets stuck at energy-537.65. At the 540th quench{,
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-510 TABLE Il. Three lowest minima. See Table | for notations.
......... ntial ener 515
2w potenienerey LJsg0, =40 h,ng=3.7x 1° LJ1000,t=150h,ng=10P
S —— number of changed atoms -520
s 704 Sy U nf U nf
T 0] 55 5
%D o 0 § —3382.693487 6 —7128.821828 2
::f; ] g —3379.194148 2 —7127.127060 3
B 0] i =535 ‘é —3378.108229 1 —7126.146796 1
g 0 -540
Z 20
-545 - . . .
10 The three lowest minima found are given in Table II. We did
B LS L B L LN B -350 not find any references in the literature to compare these
0 30 100130 200 230 300 330 :9“ 0 5‘;0 550 600 630 700 730 minima, but since the lowest energy structures were found
current quenching number more then once, we can conclude that they are good candi-

dates for the global minima. Due to the high pressure of
external layer$14] the lowest energy structure of the beh

has an icosahedral core without a central atom. The structure
=100), subproblenti was solved and a new minimum with with a complete icosahedral core is the second lowest in
energy—540.065 was found. At the 640th quench, the algo-Table II.

rithm solves the subproblefd with the STC pool and finds We applied HGA to some LJ clusters within the 149-309
the global minimum with energy-543.665. Beyond this atoms range. In all cases we found the global minima re-
point, the algorithm hopelessly tries to improve the obtainechorted in Ref.[15]. For LJ g we found a lower minimum
global minimum. with energy—1132.67.

The solid line illustrates, in accordance with above, thatin In summary, we have exploited the issue of quasisepara-
the early stages of the minimization procéttee system isin  hility of large systems and proposed a new unbiased hierar-
a high lying region of the PBSthe number of changed chical GO algorithm(HGA). HGA showed excellent perfor-
coordinates tends to be large. When the system is sufficientlgnance in the GO tests on LJ clusters. We hope that this
minimized (310th quench this number becomes small for method will allow one to improve the GO technique for a
almost all minima and the system becomes quasiseparablfEmily of quasiseparable systems.

HGA can then be applied.

To illustrate the possibilities of HGA, we apply it without I wish to thank M. Karplus, M. Meuwly, and R. Stote for

modification to a global optimization of kg and LJggo. helpful discussions.

FIG. 2. Properties of minima during the HGA run ongj.J

[1] S. Kirkpatrick, J.C.D. Gellat, and M. Vecchi, Scien220, 671 permutationgl then structures of these local minima should be
(1983. superposed to minimize the numberadfangedcoordinates.

[2] D.M. Deaven and K.M. Ho, Phys. Rev. Left5, 288 (1995. [9] F.H. Stillinger and T.A. Weber, Scien@25 983 (1984).

[3] D.J. Wales and J.P.K. Doye, J. Phys. Cheml1@l, 5111  [10] S.V. Krivov, S.F. Chekmarev, and M. Karplus, Phys. Rev. Lett.
(1997. 88, 038101(2002.

[4] Z. Li and H.A. Sheraga, J. Mol. Struct..: THEOCHEM9, [11] R.H. Leary, J. Global Optiml8, 367 (2000.
333(1988. [12] J. Houdayer and O.C. Martin, Phys. Rev. Le®3, 1030

[5] D. J. Wales, J. P. K. Doye, A. Dullweber, and F. Y. Naumkin, (1999.
The  Cambridge  Cluster ~ Databgse URL  http// 131 p. Ljy and J. Nocedal, Math. PrograiB45, 503 (1989.

brian.ch.cam.ac.uk . [14] L.L. Boyer and J.Q. Broughton, Phys. Rev. 2, 11 461
[6] D.J. Wales and H.A. Scheraga, Scier®&5 1368(1999. (1990

i Lo S o P e o 15 . s . o, o P o
Y P Y y g mun. 123 87 (1999.

potential energye.g., for clusters, translational, rotational, and

025701-4



