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Hierarchical global optimization of quasiseparable systems: Application to Lennard-Jones clusters
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An unbiased hierarchical global optimization~GO! method for quasiseparable systems is presented. In such
systems the coordinates of a set of nearby local minima approximately describe the coordinates of a much
larger set of surrounding local minima. This allows one to reduce the original GO problem to a much simpler
GO subproblem that uses the coordinates of the local minima to reduce the search space and simplify its
landscape. The algorithm showed excellent performance in tests on ‘‘difficult cases’’ of Lennard-Jones~LJ!
clusters. Putative global minima of LJ500 and LJ1000 are obtained.
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Global optimization~GO! is one of todays rapidly grow
ing fields of science with many important practical applic
tions. In a general statement of the problem, the global o
mization of an arbitrary function requires a search throu
the whole of configurational space. The problem is nonde
ministic polynomial-time~NP!-hard due to the fact that th
space grows exponentially with the problem size. Howev
in many interesting problems, the functions to be optimiz
are not arbitrary and possess some characteristic prope
This allows one to devise effective heuristic algorithms
find global minima. However, the problem of proving th
the determined minimum is a global one usually still rema
NP hard.

For brevity we will consider the problem of an unbias
GO of a potential energy surface~PES! U(x) of a many-
body system~e.g., cluster!, wherex represents the system
coordinates. A number of general methods have addre
this problem. Simulated annealing@1#, the first announced
generally applicable unbiased optimization technique, w
not very successful at the GO of these systems if the P
was rugged. Genetic algorithms@2# ~GA! were the first meth-
ods that reproduced, in an unbiased search, all the kn
global minima of moderate Lennard-Jones~LJ! clusters as
well as finding new global minima. According to the liter
ture, the ‘‘basin-hopping’’ method@3# ~which is similar to the
Monte Carlo plus minimization method@4#! is one of the
fastest unbiased global optimization methods for mode
sized systems. It was applied to various cluster systems~LJ,
Morse, water TIP4P, etc.! with results being entered into th
Cambridge Cluster Database~CCD! @5#. A review of other
GO methods can be found in@6#.

GO by these methods becomes very time consuming
larger systems because of the huge search space, e.g., g
optimization of LJ98 with a variant of basin hopping takes o
average, 30 CPU hours on a Sun Ultra II 333 MHz@7#. Here
we will exploit a property of some large systems~quasisepa-
rability! that can significantly improve the efficiency of G
methods. As the system size increases, distant parts be
almost independent of each other; i.e., the interaction of
atoms in one subsystem with atoms in another subsyste
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weak compared to the interactions inside the subsystem:
strong enough to make a notable contribution to the to
energy, but it is weak with respect to the change of the c
figuration inside the subsystem, which is stabilized via mu
stronger local interaction.

For such systems, the coordinates of a set of nearby l
minima approximately describe the coordinates of a mu
larger set of surrounding local minima, and allow one
reduce the original GO problem over that region to a n
GO subproblem~hierarchical step!, which operates directly
with the local minima. This significantly simplifies the orig
nal problem by reducing its search space and simplifying
landscape~Fig. 1!. Such hierarchical reduction of the prob
lem is continued until the last problem can easily be solv
by a simple GO algorithm.

Consider a local minimum structure of the system. If w
randomly perturb a small part of the structure and apply lo
minimization, we can find a new local minimum nearb
Since distant parts of the system are independent, the
structure will, most likely, differ significantly from the origi
nal in only a small~perturbed! part, with the rest of the
structure being almost the same. We call such systems qu
separable. More rigorously, letx5$x1 , . . . ,xn% and x8
5$x18 , . . . ,xn8% be the coordinates of two nearby loc
minima on the PES. Given a thresholde, we call the coor-
dinatexi8 ~or xi) changedif ixi2xi8i.e @8#. The system is
quasiseparable if, for almost every pair of nearby lo
minima, the number ofchangedcoordinates is much smalle

FIG. 1. Sketch of the HGA on a model PES. The search spac
subproblemH is much simpler than the original problem.
©2002 The American Physical Society01-1
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than the total number of degrees of freedom of the syste
Note that quasiseparability depends on the region of

PES considered. In high energy regions the system is usu
very unstable with respect to minimization, and the pert
bation of a small part of the structure could lead to the re
ganization of a considerable part of it.

Consider the local minimumx05$x1
0 , . . . ,xn

0% together
with m surrounding nearby local minimax1, . . . ,xm. We call
this the basis set of local minima. For every minimum (xj ) in
the basis set we store the set ofchangedcoordinates with
respect tox0 as dxj5($xi 1

j , . . . ,xi k
j %,$ i 1 , . . . ,i k%), where

$xi 1
j , . . . ,xi k

j % and$ i 1 , . . . ,i k% are the values and the indice

of thechangedcoordinates, respectively. LetTjx5x8 denote
the following transformation ~substitution!: if i P$ i 1 ,
. . . ,i k% of dxj , thenxi85xi

j , elsexi85xi , i.e., Tjx
0 is equal

~with accuracye) to the xj local minimum. If we further
apply such a transformationTk to Tjx

0, which acts solely on
nonchanged coordinates inTjx

0, we find the approximate
position of a new local minimumTkTjx

0, because the loca
surroundings of each coordinate are the same as those o
coordinate in its respective local minimum of the basis
and the distant interactions are weak. Consequently, appl
successive transformations one obtains the following se
local minima:Ti 1

. . . Ti s
x0, with s<m. To simplify things,

we may apply the entire set of transformations, though so
of them would conflict with others~if they share the coordi-
nates!. The total number of local minima could be estimat
as 2m ~which demonstrates the well-known fact that in clu
ters, the number of local minima grows exponentially w
the number of atoms@9#!. We call this the constructed set o
local minima.

The above construction approximately describes the c
dinates of an exponentially large number of local minima
a region of the PES in compact form. It can also incorpor
the coordinates of saddle points and be used for the des
tion of landscapes of important regions of the PES of la
systems, where the simple description as a database of
minima and saddle points is impossible due to their hu
number.

Using this construction, we can significantly improve t
general purpose, simple greedy algorithm~SGA!, which,
when implemented in local minima terms, is as follows~see
Fig. 1!. Applying local minimization~quenching! to a ran-
dom configuration, one finds an initial local minimum. Th
result is improved by randomly exploring nearby loc
minima. These minima can be found, for example, by c
finement simulation@10#, i.e., a random walk in configura
tional space with subsequent quenching. If no lower mini
are found during the specified number of quenchesntry
~SGA ‘‘gets stuck’’!, the SGA is terminated. The algorithm
suitable for systems with simple~‘‘one funnel’’! PESs, but
could be applied to systems with more complex landscape
the described procedure is repeated a number of times~mul-
tistart! with the hope of finding a funnel that leads to a glob
minimum ~right one in Fig. 1!. For the PES in Fig. 1, nearly
half of all starts will find the global minimum.

If the number of funnels is large, the SGA with a mul
start procedure becomes very inefficient, since only a t
02570
.
e
lly
-
r-

the
t

ng
of

e

-

r-

e
ip-
e
cal
e

l
-

a

if

l

y

fraction of attempts will succeed; e.g., for the GO of LJ98

only six of 1000 attempts were successful@11# ~the variant of
basin hopping described in this work is SGA!. The fraction
of successful attempts can be improved by broadening
search region when looking for lower minima. This can
achieved by considering not only the neighboring minim
but also the second neighbor minima, the third neigh
minima, and so on. Though this process seems rather el
rate for an arbitrary system, it can be done effectively for
quasi separable systems, where the nearby minima app
mately describe the minima of the constructed set. We s
the GO subproblem~call it subproblemH): find the lowest
minimum in the constructed set, i.e., findi 1 . . . i s with the
lowestU( i 1••• i s), whereU( i 1••• i s) denotes the energy o
the minimum corresponding toTi 1

•••Ti s
x0. SubproblemH

is significantly simpler than the original problem becau
~see Fig. 1!; first, we significantly narrow the search spa
~now we operate only on coordinates of local minima inste
of the full space! and second, we simplify the landscap
~instead of a basin with barriers we have just one point!. If
subproblemH is still complex we can, in turn, reapply th
same idea, consequently obtaining a hierarchy of GO s
problems with decreasing complexity, until the last subpro
lem can effectively be solved by SGA. We cannot rigorou
call this a recursion algorithm, since not every problem
this hierarchy can be solved with the same implementation
SGA; rather, we call it ahierarchical greedy algorithm
~HGA!.

The local minimum energyU( i 1 . . . i s) can be found by
quenching, starting fromTi 1

. . . Ti s
x0, or estimated as

U(Ti 1
. . . Ti s

x0), or in a more complex manner.
Let us see how HGA is related to other unbiased G

techniques. Like GA, HGA uses parts of different structu
to construct new structures. However, unlike GA, HGA r
quires these structures~parents in GA terms! to be very simi-
lar ~number of changed coordinates should be much less
the total number of degrees of freedom!. This seems more in
line with natural evolution, where not every species cros
every other. HGA can be considered as a limiting case of
~if we accept the requirements of very similar parent!,
where instead of searching for a very similar configuration
is easier to perturb the current one. Next, in GA the ‘‘child
is often produced stochastically, whereas in HGA it is a se
rate GO subproblem that needs to be solved. This peculia
of HGA resembles the genetic renormalization algorith
~GRA! @12#, where the problem of selecting the optim
‘‘child’’ is reformulated as the original problem with lowe
size ~renormalization step!. However, the GRA could be ap
plied only to renormalizable systems~it was applied to the
traveling salesmen and spin glass problems@12#!, where the
problem of selecting the optimal child is again the sa
problem of lower size. HGA uses another hierarchy to co
struct subproblems, namely, the hierarchy of local minim
i.e., each subproblem optimizes the set of local mini
found by the preceding problem, consequently reducing
search space. We require the subproblemH to be just a GO
problem that is simpler than the original problem, and th
can be solved by any general purpose GO algorithm. Ano
1-2
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difference between the algorithms is that GRA, like G
does not pay attention to the similarities between the st
tures and works with the entire configurational space. T
seems inefficient when the PES of the systems has diffe
deep minima with different structures~e.g., in fcc and icosa-
hedral packing schemes in LJ clusters!, because it is unlikely
that the lowest minimum consists of parts of different stru
tures~i.e., the ‘‘genetic code’’ that one deep minimum po
sesses is useless for other distant deep minima!. In compari-
son with the basin-hopping method@3#, HGA finds the
lowest constructed minima~if subproblem H has been
solved! in spite of the actual landscape of the PES in t
region; the former techniques are sensitive to the landsc
of the deformed PES, since they rely on the ergodicity
Monte Carlo sampling of the landscape.

Let us apply the HGA to LJ clusters, which are wide
accepted as a benchmark for GO algorithms. In dimens
less units, the problem is to find a configuration ofn atoms
(r1 , . . . ,rn), with the lowest value of the following potentia
energy:

U~r1 , . . . ,rn!54(
i , j

r i j
2122r i j

26 , r i j 5ur i2r j u.

The set of nearby local minimax1, . . . ,xm found during
the SGA phase are superposed with the lowest one (x1) in
the set. From atom positions$x1

1 , . . . ,xn
1 ,x1

2 , . . . ,xn
m% we

form a pool of distinguished atoms~SGA pool!, whose dis-
tance from each other is more thene50.3 ~with total number
N). SubproblemH is to select from the pool ofN atoms a set
of n atoms with the lowest potential energy~transformations
Ti move atoms between different positions!. The total num-
ber of constructed minima could be estimated asCN

n . Sub-
problemH is solved again by SGA in local minima term
(ntry;100); the energies of the constructed local minima
estimated. The output is refined by the minimization o
number of lowest minima, giving us the true global min
mum of the constructed set with high probability. For t
considered range of atoms~0–1000!, SGA was able to solve
subproblemH. However, in the limit of largeN, it was not
very efficient, and to solve the subproblemH in more diffi-
cult cases, HGA should have more hierarchical steps.

To find a new nearby minimum in the SGA phase, w
randomly shifted an atom and applied local minimizati
~using the limited memory variant of the Broyden, Fletch
Goldfarb, and Shanno~BFGS! algorithm @13#!.

During the SGA phase the algorithm collects the obtain
local minima~forms the SGA pool! to build the set of trans-
formations~local moves! to walk over the set of constructe
minima. One can also use availablea priori information
about the system to expand the set of transformations and
set of constructed minima. For example, it is well known th
the low energy structures of the homogeneous clusters
sess some spatial symmetries, though not always comp
~not every atom has a corresponding symmetrical one!. Con-
sider various symmetrically transformed copies~STC! of the
structure. If the number of changed coordinates betw
STC and the original structure is small, we can consider
former as a new nearby local minimum in a proper coor
02570
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nate basis. From all such STC we form a pool~STC pool! of
atoms and proceed similarly to described the above.

The overall structure of one attempt of the HGA is~1!
generate an initial random local minimum~2! SGA phase
(ntry5100); ~3! solve subproblemH with the SGA pool of
atoms, if a lower minimum is found, go to~2!; ~4! solve
subproblemH with the STC pool of atoms, if a lower mini
mum is found, go to~2!.

The algorithm was tested on a number of LJ clusters.
all clusters HGA found the known lowest minima given
the CCD @5#. To illustrate how the algorithm works, w
choose the clusters to be difficult cases for unbiased glo
optimization@11#: LJ75, LJ77, and LJ98. We issued 500 at-
tempts for each of the clusters. The nine most frequen
found minima of the clusters are given in Table I. HG
found all known putative global minima. In the table oth
‘‘global’’ ~lowest! minima of structures with different mor
phologies~e.g., lowest icosahedral structure of LJ75 with en-
ergy2396.282 249) are also shown. This confirms that HG
is unbiased. Since subproblemH does not always give the
true global minimum of the constructed set, not every mi
mum in the table represents a structure with different m
phology. For example, the following pairs of LJ77 minima,
2408.518 265 and2408.303 313, 2408.499 443 and
2408.203 358, differ by only two atoms. Comparing th
mean time to find the global minimum for the LJ98, t
.14.4 min ~PII 333 MHz!, with the value reported in@7#,
t.30 h~Sun Ultra II 333 MHz!, we found that HGA is faster
than a variant of SGA. Another manifestation of a more
ficient optimization of HGA is the fraction of successful a
tempts;10.6%, compared to SGA’s;0.6% @7#.

Figure 2, illustrates the performance of the HGA~we
choose an attempt when the global minimum of LJ98 was
found!. It shows the number of changed atoms of the n
local minimum compared to the current one~solid line!, and
its potential energy~dotted line! versus the current quench
ing. At the beginning, SGA progresses quickly. Near t
350th quench it slows down and at the 440th quench, S
gets stuck at energy2537.65. At the 540th quench (ntry

TABLE I. Nine most frequently found minima.t andnq denote
the total computational time and the number of quenches in the
respectively.U and nf denote the energy of the minimum~in LJ
units! and the number of times it was found.

LJ75,t5450 min, LJ77,t5450 min, LJ98,t5765 min,
nq52.53105 nq52.53105 nq533105

U nf U nf U nf

2397.492331 27 2409.083517 19 2543.665361 53
2396.282249 62 2408.518265 42 2543.642957 63
2396.238512 166 2408.499443 73 2541.894959 8
2395.734052 39 2408.486640 23 2541.869748 11
2394.637268 9 2408.463320 25 2541.436260 22
2394.560154 18 2408.311778 13 2540.362599 7
2393.435288 4 2408.303313 25 2539.720452 110
2393.435065 4 2408.203358 51 2539.698759 62
2392.531982 3 2407.756902 15 2538.883972 11
1-3
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5100), subproblemH was solved and a new minimum wit
energy2540.065 was found. At the 640th quench, the alg
rithm solves the subproblemH with the STC pool and finds
the global minimum with energy2543.665. Beyond this
point, the algorithm hopelessly tries to improve the obtain
global minimum.

The solid line illustrates, in accordance with above, tha
the early stages of the minimization process~the system is in
a high lying region of the PES!, the number of changed
coordinates tends to be large. When the system is sufficie
minimized ~310th quench!, this number becomes small fo
almost all minima and the system becomes quasisepar
HGA can then be applied.

To illustrate the possibilities of HGA, we apply it withou
modification to a global optimization of LJ500 and LJ1000.

FIG. 2. Properties of minima during the HGA run on LJ98.
in,

nd
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The three lowest minima found are given in Table II. We d
not find any references in the literature to compare th
minima, but since the lowest energy structures were fou
more then once, we can conclude that they are good ca
dates for the global minima. Due to the high pressure
external layers@14# the lowest energy structure of the LJ1000
has an icosahedral core without a central atom. The struc
with a complete icosahedral core is the second lowes
Table II.

We applied HGA to some LJ clusters within the 149–3
atoms range. In all cases we found the global minima
ported in Ref.@15#. For LJ186 we found a lower minimum
with energy21132.67.

In summary, we have exploited the issue of quasisep
bility of large systems and proposed a new unbiased hie
chical GO algorithm~HGA!. HGA showed excellent perfor
mance in the GO tests on LJ clusters. We hope that
method will allow one to improve the GO technique for
family of quasiseparable systems.

I wish to thank M. Karplus, M. Meuwly, and R. Stote fo
helpful discussions.

TABLE II. Three lowest minima. See Table I for notations.

LJ500,t540 h,nq53.73105 LJ1000,t5150 h,nq5106

U nf U nf

23382.693487 6 27128.821828 2
23379.194148 2 27127.127060 3
23378.108229 1 27126.146796 1
be
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